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ABSTRACT 

This thesis extends and appl  ies a particular sequential estimation 

First a Method i s  presented t o  increase the accuracy o f  the technique. 

estimator, given bounds on the measurement noise. 

presented where some systems may be estimated adequately w i t h  a 

Second a method is  

greatly simplified estimator which results i n  a large reduction i n  the 

amount of computation required by the estimator. 

showing how these methods have been applied successful ly. 

Examples are discussed 
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C H A P , T E R  I 

I NTROr'bCT I ON 

The purpose of this report i s  t o  extend and apply the sequential 
I 

estimation technique reported in [l], expanded i n  [Z] and [3], and 

uti l ized i n  [4]¶ [S] and [6]. 

parts. 

for  non-linear time varying systems. Chapter I11 deals with the 

The thesis i s  divided into two major 

Chapter I1 deals w i t h  a method o f  improving s t a t e  estimation 

practical application of the above techniques and shows how the amount 

of computation required by the estimator may be greatly reduced. 

A. Purpose 

The extension of the estimator improves estimation i n  a large class 

of non-linear time varying systems. These systems are those which have 

a scalar output which i s  a l inear combination o f  the system states .  

T h i s  output is corrupted by additive measurement noise. 

i s  based on the assumption that  this noise has a known bound on i t s  

amplitude. 

mance index which is the integral of the sum of the squares of the 

weighted estimation errors. T h i s  index i s  reduced by generating an 

improved estimate of a t  l eas t  one of the system s ta tes  u s i n g  the output 

o f  the original estimator and knowledge of the bound on the measurement 

The technique 

The improvement i n  estimation i s  with respect to  a perfor- 

noise. The advantage of this technique i s  that  i t  improves estimation 

and can be implemented easily. In some cases i t  also assures convergence 
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of some of the estimation errors to  f i n i t e  bounds. 

The second part  of the repopt deals w i t h  the practical application 

of the estimator discussed i n  [3]. In h i g h  order systems the amount 

of computation required by the estimator becomes extremely large so 

that i t  is d i f f i cu l t  t o  implement the estimator i n  real time. 

some non-linear and/or time varytng systems i t  is  possible to  "linearize" 

the estimator in such a way t h a t  adequate i f  not optimal estimation 

For 
i 

by the estimator for  

l inear  and time vary 

values are then used 

occurs. This is  done by solving the matrix Riccati equation required 

i t s  steady s t a t e  values by f i r s t  removing the non- 

ng terms from the system. These steady s t a t e  

i n  the remaining estimator equations rather than 

those values which would have corne from the time varying solution of 

the matrix Riccati equation. 

required by the estimator because the matrix Riccati equation is  only 

T h i s  greatly reduces the computation 

solved once and this may be done "off-line." The disadvantage of this 

method i s  tha t  the loss i n  estimation accuracy may vary greatly from 

system to system and that  some systems cannot be formulated i n  this 

manner. 

B, Sumary of the Estimation Tgchnique 

Befare proceeding, the basic estimation technique as developed i n  

[3] i s  sumnarized. The problem considered is  that of ob ta in ing  an 

optimum estimate of the s t a t e  of systems described by vector differential  

equations of the form 
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Y(t) = h(tY x)  + v ( t )  (1-2) 

where x ,  an n-vector, is the system s t a t e  vector; g o ( t ,  x )  i s  an n-vector 

function those variation w i t h  t and x i s  completely known; A g ( t ,  x )  and 

k ( t ,  x )  are n-vector and n x q dector functions, respectively, whose 

variations w i t h  t are unknown; u ( t )  i s  a q-vector unknown i n p u t  which 

is  undefined i n  a s t a t i s t i ca l  sense; h ( t ,  x) is a known d-vector function; 

y ( t )  i s  a d-vector output; and v i s  a d-vector o f  observation errors 

which are undefined i n  a s t a t i s t i ca l  sense. The estimator is  chosen to 

sa t i s fy  the equation 

where x, an'n-vector, i s  any estimate of the s t a t e  vector x ,  and 

w ( t ,  x, y) i s  an n-vector i n p u t  t o  the estimator which  i s  to be deter- 

m i  ned. 

The optimum estimate of  x ( t )  , denoted by x(t) = ?(t) ,  will be 

That i s ,  the estimation problem optimum in a leas t  squares sense. 

solved is the following: 

0 - -  < t < tf ,  determine an estimate i(tf), of the current s t a t e  vector 

x ( t f ) ,  which i s  optimum i n  the sense t h a t  i t  minimizes the functional 

given o u t p u t  measurements y ( t )  i n  the interval 

where I I I I and I I 1 I Q are general ized norms defined by 
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I 

where Q and W are n x n positive definite matrices and the superscript 

T denotes transpose. The following relations pertaining t o  (1-4) also 

hold: 

f ( t ,  T7) = Ag( t ,  x) + k(t, ; ; r>u( t )  (1-9) 

If equations (1-7), (1-8) and (1-9) are substituted into (1-4) 

the resul t  i s :  

(1-10) 

The problem now i s  t h a t  of minimizing (1-10) with respect t o  w ( t ,  x, y ) ,  

subject t o  the constraint equation (1-3). I t  i s  noted tha t  minimizing 

the integral of the residual errors,  i .e. ,  e l ( t )  and e , ( t ) ,  squared i s  

no t  the same as minimizing the integral o f  the estimation errors 

squared, where the estimation error i s  an n-vector defined by: 

2 ( t )  = x ( t )  - i(t) (1-11) 

Hence, this  leaves room for  improvement in the estimator a f t e r  the 

optimization process has been carried out.  

The solution of th i s  optimizatjon problem i s  now summarized. 
. /  
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Pontryagin's maximum principle i s  employed i n  this solution. 

this end, the Hamiltonian H ( t ,  x, A,  w)  i s  defined as 

Toward 

(1-12) 

where A, the Lagrange multiplier, i s  an n-vector. 

The Hamiltonian i s  minimized w i t h  respect t o  w ( t ,  x, y) by sett ing 
I 

(1-13) 

The solution of (1-13) yields 

(1-14) * 1 w ( t ,  x, y)  = f ( t ,  X) - w-lx 

where w*' i s  the optimum estimator i n p u t  and W-l i s  the inverse of W. 

The use of (1-14) i n  (1-12) leads to  

* 
where y(t) i s  the estimate corresponding t o  w . ( t ,  X, y). 

I t  i s  necessary t h a t  x and A sa t i s fy  the canonical equations: 

(1-16) 

The terminal time tf has been fixed, and y(0) and y(tf) are free. Thus, 

transversal i ty  requires that: 
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A(0) = 0 a ( t f )  = o (1-17) 

If the two p o i n t  boundary value problem (hereafter referred to as 

TPBVP) represented by (1-16) and (1-17) is  solved, i t  yields x ( t f ) ,  i.e., 

the leas t  squares estimate o f  x ( t f ) .  

tfl ,  the TPBVP must be solved again us ing  the boundary conditions: 

8. 

For a time greater than tf,  say 

- x(0) = 0 h ( t f , )  = 0 (1-18) 

In order to  avoid solving a different TPBVP for  each value of final 

time, the problem is recast as a sequential problem i n  which tf is  an 

independent variable, the r u n n i n g  time variable. T h u s ,  this TPBVP i s  

embedded in a larger class o f  TPBVP's. Let this TPBVP be embedded into 

the larger class o f  TPBVP's w i t h  boundary conditions: 

x(0) = 0 h ( t f )  = c (1-19) 

The missing terminal condition on x is denoted by 

(1 -20) 

where C and tf are regarded as independent variables. 

(1-19) i t  can be shown [ l ]  that  r(C, tf) must sa t i s fy  

From (1-16) and 

where 

ar - atf- [3nxl I 

(1-21) 

(1 -22) 

(1 -23) 
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* 
ac (1 -24) 

Equation (1-15) i s  s u b s t i t u t e d  i n t o  (1-21) and an approximate so lu t ion  

o f  the form 

r(C, t f )  = P( t f )C + ;(ef) (1 -25) 

is t r i e d .  Expanding the result about r ( 0 ,  tf) and not ing t h a t  only 

those s o l u t i o n s  f o r  C = 0 a r e  o f  interest, the sequent ia l  e s t ima to r  

equat ions  become: 

(1 -26) 

(1 -27) 

and 

Note t h a t  equat ion (1-27) is  known a s  the matrix Ricca t i  equat ion.  
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C H A P T E R  I1 

EXTENDED :EST1 MATOR 

A. Problem Definition 

The estimator summarized in Chapter I i s  optimum i n  the sense that  

i t  is designed t o  minimize the cost function J1 defined in (1-4).  

This cost function depends only indirectly upon the error  in estimation 

defined in (1-11). 

designed on the basis of minimizing the functional 

I t  would be much’better i f  an estimator could be 

where g ( t )  i s  the error  in estimation. 

which has n o t  been solved for  the class of systems under consideration. 

However, the estimator developed in Chapter I has associated with i t  a 

This i s  a d i f f i cu l t  problem 

cost 52 for  each f inal  time, tf. The problem considered in this chapter 

i s  t h a t  ’of generating a new se t  of estimates of x ( t )  based on the 

original estimate x ( t )  and on the bounds on the measurement noise which 

are  assumed t o  be known. The new estimates will reduce the value o f  52 

* 

fo r  each tf from t h a t  value generated by the original estimates. Hence, 

i n  a practical sense the estimation has been improved. The value of the 

original cost  function J1 may be increased, b u t  since 52 i s  a better 

measure of the accuracy in estimation an increase in J1 i s  acceptable. 
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B. Derivation of Extended Estimator 

I t  is convenient to  begin the derivation w i t h  a s e t  of definitions. 

n x 1 system state vector 

n x 1 estimate of x ( t )  generated by the estimator 

summarized i n  Chapter I ,  Section B. 

n x 1 improved estimate of x ( t )  t o  be derived i n  this 

To obtain a 

section, 

error  i n  es timaii on 

e$) = x ( t )  - x,(t) nJ n 

reduced error  i n  estimation 
nJ ... 
em(t)  = x ( t )  - km(t) 

incremental change i n  estimation error  
nJ nJ nJ 

aeo(t)  = q t )  - eo(t)  

performance index for  io( t) 

n x n positive dyfinite matrix B to  be diagonal. 

which follows possible. The restriction is  reasonable because i t  makes 

T h i s  makes the derivation 
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the performance index equal t a  the integral of the sum of the weighted 

squares o f  the estimation errors. This i s  a direct  and clear-cut measure 

of the accuracy of the estimation. 
* 

The object i s  now t o  find some estimate, xm(t), which insures t h a t  

for  a l l  tf 2 0  

h 

If t h i s  condition holds, then t h e  new estimate, x m ( t ) ,  i s  an improvement 

over xo(t) with respect t o  the ciosen performance index. The choice o f  

im(t) i s  based on the following: 

(a )  ;c,(t) 

( b )  Y ( t )  - the measurements of the system 

(c)  y ( t )  = h ( t ,  x) + v ( t )  - equation (1-2) 

(d)  h ( t ,  x) - known function, l inear in x ( t )  

( e )  vm - bound on magnitude of v ( t )  

- the originAl estimate 

For simplicity, th i s  derivation ‘issumes t h a t  y ( t )  and v ( t )  are scalars. 

Hence the bound on v ( t )  i s  vm, i.e., 

I v ( t ) l  ( v m  for  a l l  t (2-1 0)  

Using the above information ;,(t) will now be derived such t h a t  the 

inequality (2-9) is  sa t i s f ied  f o r  a l l  tf - > 0. 

The derivation begins by using (2-5), (2-6), (2-7) and (2-8) t o  get 

o r  

52, - 52,, * p; B$, - . o  zT B20] d t  



11 

'L 'L Using (2-4),  i .e. ,  em = e, t do in the above equation gives 

% T  .\IT % "rn - 52, = 1; [(zo + ne,) B ( 2 0  3. nZ0) - eoBeo] d t  

'L Suppose a neo can be found such t h a t  52, - 52, 

and a l l  eo,  then from (2-2) , (2-3) and (2-4) 

0 for  a l l  tf 0 
2, 

t: 
A '  'L % io) % -  ne, - em - eo = ( x  - xr,) - ( x  - 

A A 'L ae, = -x f xo m 
or 

A 
2, A xm - - xo - ae,. 

(2-11) 

(2-1 2)  

The estimate io i s  known so the selection of nZO i s  equivalent t o  the 

selection of x,, the improved estimate,and condition (2-9) will be 

sat isf ied.  

h 

Sumnarizing, pick ~8~ such t h a t  

52, - 52, A8: B ( A ~ ,  + 2z0) d t  - < 0 (2-1 3)  

for  a l l  tf 

t h a t  there s t i l l  remains some freedom i n  the choice o f  

i s  used t o  minimize 52, - 52, so t h a t  the new estimate will be the 

greatest  possible improvement over xo. The solution of these problems 

f 01 1 ows . 

0 and a l l  80. When this  problem i s  solved, the resul t  i s  

This freedem 
I 

n 

Since (2-13) must hold for  a l l  tf and a l l  zo, i t  i s  Sufficient that  
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the integrand be nonpositive, i .e., 

o r  

Define 

AZO - - 

and 

Asol 

. 

''on 

(2-1 4) 

(2-1 5) 

(2-16) 

where b > 0 for  i = 1 , 2,  . .. , n because B is  positive definite.  j 
Expanding (2-14) using (2-15) and (2-16) gives 

$2 QJ2 Aeolbl + ae b t ... t ~ 8 '  b + 2 ~ 8  8 b t 02 2 on n 01 01 1 

02 02 2 on on n - t 2 ~ 8  8 b + --. + 2 ~ 8  8 b < 0. (2-17) 

Before going on with th i s  resul t  i t  is  necessary t o  work with h ( t ,  . x i .  

Since this  function i s  assumed t o  be l inear in x ( t )  i t  may be written as 

h ( t ,  X )  = h l ( t ) x l  + h2( t )x2  + * * *  + h n ( t ) x n  (2-1 8) 

where xi i s  the i t h  - component o f  x ( t )  and the h i ( t )  for i = 1 ,  2 ,  ... , n 
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are known funct ions.  With the ob jec t  o f  s a t i s f y i n g  (2-9) i n  mind, p i c k  

Azo i n  the f o l l o w i n g  manner. L e t  

AZoi = (hi(t)/bi)a (2-1 9) 

for i = 1, 2 ,  ... , n where the value of a remains t o  be selected. Then 

using (2-19) i n  (2-17) arid s i m p l i f y i n g  gives 

n n 

i =1 i =1 

a 2 1 hi(t)'/bi + 2a 1 hi(t)20i 2 0. 

Noting however t h a t  

n 

i =1 
' h ( t ,  z0) = 1 hi(t)20i 

then (2-20) becomes 

2 n 

i = l  
2 a 1 hi(t) /bi -I- Eah(t, z0) 5 0. 

Equation (2-2) and the l i n e a r i t y  o f  h ( t ,  x) gives 

h(t ,  $o)  = h ( t ,  (x  - io)) = h ( t ,  x) - h ( t ,  io). 

Using (1-2) i n  (2-23) 

and w i t h  t h i s  r e s u l t  (2-22) becomes 

For simp1 i c i  ty de f i ne  

M ( t )  = -1 n 2  hi(t)/bi 
i =1 

(2-20) 

(2-21 ) 

(2-22) 

(2-23) 

(2-24) 

(2-25) 



14 

Note t h a t  M(t) 0 because each bi is p o s i t i v e .  Define also 

(2-26) 

Simp1 i f y i  ng (2-24) us ing  (2-25) and (2-26) g i v e s  

(2-27) 2 M(t) + 2 - p  - 2va - < 0 

The problem i s  now t o  pick a value f o r  a so tha t  (2-27) holds  f o r  a l l  

v ( t ) ,  Iv l  vm , given known M(t) and y. Then (2-9) will be s a t i s f i e d  

and and im can be generated,  

This  will be done by f i n d i n g  a region R i n  the (y, a) plane where 

(2-27) holds f o r  a l l  v ( t )  such t h a t  I v l  5 vm. T h i s  region R will be a 

func t ion  o f  M(t). 

Suppose a > 0 ,  then (2-27) becomes 

aM + 2y - 2~ 2 0  . (2-28) 

Examine this i n e q u a l i t y  f o r  the extremes of v. 

( a )  I f  v =/ v,, then a 2- (2 /M)(y  - vm). 

this i n e q u a l i t y  i s  v a l i d  if and only i f  y < vm. 

If v = 0, then a 5 -(2/M)(y) for y < 0. 

Since a > 0 and M > 0, 

( b )  

( c )  I f  v = -vm, then a -(Z/M)(y + vm) f o r  < -vm. 

S ince  v may range anywhere w i t h i n  i t s  bounds, the p a r t  o f  the R 

region for a > 0 is  t h a t  reg ion  of the (y, a) plane where cond i t ions  

a ,  b and c above hold simultaneously.  A d i r e c t l y  analogous argument 

holds for the par t  o f  R when a < 0. See Figure 1 f o r  a picture o f  the 

reg ion  R der ived  above. I 
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a 

FIGURE 1. Region R 

For any given y a value of  a may be chosen i n  R and (2-9) will be 

sa t i s f ied  as desired. If  Iyl < v,, then a i s  picked equal t o  zero and 

(2-9) is  s t i l l  sa t isf ied.  Hence, i t  is  assured tha t  w i t h  the above 

selection of a, which determines ago and f ina l ly  im, the difference 
% - 52, will be negative or zero fo r  a l l  tf and a l l  eo. I t  is now a J2m 

matter o f  trying t o  pick the best value of a i n  R so t h a t  52, - JZ0 will 

be as negative as possible and therefore give the largest  improvement 

i n  .estimation. 

Repeating equation (2-27) and set t ing the l e f t  side equal to  a gives 

I I 

Now minimize 13 w i t h  respect t o  01 i n  the region R by set t ing 
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a = -(y - v) /M( t )  f o r  (y, a) i n  R. (2-29) 

Choosing 01 us ing  equation (2-29) requires the knowledge of v to optimize 

the choice, b u t  v i s  to ta l ly  unknown except for  i t s  bounds. If  the mean 

of v were known i t  would be best t o  use i ts  value i n  equation (2-29), 

b u t  since this i s  not known i n  general, any value of v w i t h i n  i t s  bounds 

will do. Pick v = 0 i n  (2-29) as the most convenient. Then (2-29) becomes 

a = -y/M(t) fo r  (y, a) i n  R , 

T h i s  i s  equivalent t o  saying 

a = - y / M ( t )  fo r  Iyl 2vm. 

Recall i ng that  

m a = 0 fo r  I y l  < v 

(2-30) 

(2-31 ) 

i t  now remains to  pick when vm 1 ~ 1  2v,. Assuming that  the mean of 

v is  zero, i t  is best t o  pick a i n  R such that  01 l i e s  as close as possible 

t o  the optimum l ine given by (2-30). The resu l t  is 

i 
a = -2(y - v,)/M(t) 

01 = -2(y t v,)/M(t) -2v, y 2 -v, , (2-33) 

VJ - -  < y < ZV, (2-32) 

I See Figure 2 for  a picture of 01 as a function o f  y as defined by (2-30), 

(2-31), (2-32) and (2-33).  
I 
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FIGURE 2. a as a Function of y 

The heavy l ine i n  Figure 2 represents the best choice of a as a 

function of y tha t  can be made w i t h  the information available. I f  the 

average value of v i s  known and non-zero, then this should be subtracted 

from the o r ig ina l  measurement y before the equations above are used. 

The procedure fo r  obtaining the new estimate im i s  as follows: 
h 

(a) Calculate y, i .e.,  y = y - h ( t ,  xo). 

(b)  Calculate M(t) = 1 h i ( t ) / b i .  
i =1 
n 2  

(e)  Use Figure 2 t o  get a from y and M ( t ) .  

( d )  Use equation (2-!19)¶ i .e. ,  

AZoi = ( h i ( t ) / b i ) a  for  i = 1 ,  2 ,  ... , n., 
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( e )  Finally use equation (2-12), i.e. , 

C. Experimental Results for  Extended Estimator 

The following examples are intended t o  i l l u s t r a t e  the use of the 

extended estimator derived i n  t h e  l a s t  section. The example systems and 

the estimators are simulated on ci Control Data 3600 computer us ing  a 

basic Runge-Kutta integration routine. 

Each of these experiments consists of four parts. 

trajectory of the system is found by solving equation (1-1). 

the output data from this solution i s  corrupted w i t h  measurement noise 

F i rs t ,  the 

Second, 

as in equation (1-2). 

i n p u t s  t o  the original estimator outlined i n  Chapter I to  generate io. 
The cost of this estimate is calculated us ing  equation (2-5). 

improved estimate xm i s  generated using the extended estimator derived 

in the l a s t  section and the cost of this estimate is calculated us ing  

equation (2-6). j The costs of the two estimators are then compared and 

graphs are given showing x ( t ) ,  x o ( t ) ,  and x,(t) fo r  visual comparison 

of the estimators. 

Third,  these noisy observations are used as 

a 

Finally the 
h 

h A 

The model used for the measurements corresponding to equation 

(1-2) i s  

y ( t )  = h ( t ,  x )  + 0.1 r l ( t )  I h ( t ,  x ) l  + 0.1 r,(t) (2-34) 

where h ( t ,  x) i s  the variable measured and y ( t )  i s  the observed value 

of this variable a f t e r  i t  has been corrupted by measurement noise. For 

the purposes of the examples which follow, this noise i s  generated as 
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shown i n  equation (2-34) where r,(t) and r2(t) are two s t a t i s t i c a l l y  

independent random var iab les  which are uni formly d i s t r i b u t e d  from +1 t o  

-1 f o r  each t. 

t h a t  the est imat ion equations are independent o f  the s t a t i s t i c a l  proper- 

t i e s  of the noise. 

This p a r t i c u l a r  form o f  noise i s  chosen t o  demonstrate 

The maximum value o f  t h i s  noise, v ( t ) ,  i s  assumed 

known and i s  ca lcu la ted  using the worst case condi t ions o f  equation 

(2-34). Some knowledge o f  the  bound on h ( t ,  x )  i s  assumed. 

Example I 

(a) The system t r a j e c t o r y  i s  def ined by 

x1 = x2 xl(o) = 2.0 

+ ,  = -2x1 - 3x2 + 5 s i n  t + fp(t, x) ~ ~ ( 0 )  = 1.0 

where f2(t, x)  i s  a t ime vary ing n o n l i n e a r i t y  which i s  t o t a l l y  unknown 

t o  the  estimator. For t h i s  example f2(t, x) i s  def ined as 

- 0 r l t  3 
x1 f2(t, x) = -2e 

t o  spec i fy  the system t ra jec to ry .  

(b) The measurements are def ined by 

y = h ( t ,  x) t v ( t )  

1 
where h ( t ,  x )  = xl, v ( t )  i s  def ined by equation (2-34), andVm: 0.25. 

(c)  The o r i g i n a l  est imator  as def ined by equations (1-19) and 

(1-20) i s  
A 

x (0 )  = 2 , o? 
h h A h h 

xo2 = -2xol - 3X02 + 5 s i n  t + 2pZl(y - xol) xb2(0) = 0 



where f ( t ,  io) = 

mator. Finally 

20 

i s  used because f 2 ( t 3  x )  i s  unknown t o  the es t i -  "1 0 

P = go; P + PgTA + 2P[HQ{y - h( t ,  io)}] ;  P + 7 1 1  W- 
0 OXO 0 

= [:I Q = Cl1 w = +  

r 1 

Since the system i s  l inear  the above equation fo r  P may be solved for  

steady s t a t e  by setting P z 0 and the resu l t  i s  

p l ,  = 0.549266 

= -0,198307 p12 = p21 
pZ2 = 0.285763 

The estimates generated by the above equations correspond to  

cost  o f  this estimate is  found u s i n g  (2-5) aiid (2-6) w i t h  B taken as the 

identity matrix. 

and the 
0 

( d )  Finally, im is generated us ing  the procedure outlined i n  the 

l a s t  section and the cost  of t,his estimate is  found u s i n g  (2-7) and 

(2-8) w i t h  B again taken as the identity matrix. 

W i t h  tf = 6 seconds the resu l t s  of th i s  experiment qre: 
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2.1 

1 . I  

0.I - 

-1 . I  

1 .c 

0.c - 

-1 .c 

-2.c 

A I )  

JZ0 = 3.16 

J2m = 2.58 
I I 

Graph I. Example I 
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52, = 3.156 

52, = 2.583 

- oris inal estimates 

- improved estimates 

52, - JZ0 = -0.577 - < 0 

This i s  about an 18% improvement i n  estimation w i t h  respect to  the 

given cost function and tf = 6 seconds. 

these estimates. 

See Graph I for  a plot  of 

Example I1 

( a )  The system trajectory 5s  the same as that  o f  Example I. 

( b )  The measurements are defined as before by 

y = h(t, x)  + v ( t )  

- x2, v ( t ) ' i s  defined by equation (2-34), and an where h ( t ,  x )  = 2 x1 

estimate of vm gives vm 2 0.4. 

1 

(c)  The original estimator equations are derived from the system 

equations u s i n g  (1-19) and (1-20), b u t  in this example the system's 

time varying nonlinearity, i .e. , -2e 

quently, this term affects the estimator and P equations. The systev 

i s  non-linear so tha t  the P equations have no steady s t a t e  solution. 

The  time varying solution must then be used. 

the P equations i s  taken as 

-0.l t  3 xl', i s  assumed known. Conse- 

The i n i t i a l  condii$m on 

p(0) = [: ;] 
The original estimator equations are 
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( l  + 3e-0.1t"2 
xol )  i- 

As before the cost of this estimate is calculated,but fo r  demonstra- 

t i o n  purposes the weighing matrix B may be defined as 

= [: :j . 
+ 

( d )  The improved estimate xm is generated and i t s  cost is found 

u s i n g  B above. 

Two sets o f  results are obtained for  this problem. First, i f  the 
h 

i n i t i a l  conditions on xo are chosen as 

the result for tf = 6 seconds is 

JZ0 = 2.117 

J2m =11,*159 
% improvement = 50% 
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52 = 1.16 I m  

Graph 11. Example I1 
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T h i s  resul t  i s  plotted i n  Graph 11. In the second case, the i n i t i a l  
h 

conditions on xo are chosen as : 

The resul t  for  tf = 6 seconds is : 

52, = 0.074 

52, = 0.047 

% improvement = 30% 

This resu l t  i s  not plotted because the error i n  estimation i s  too small 

I to  be seen clearly. 

I 

I 

I t  should be noted tha t  the large improvement i 'n bo th  estimates 
8. 

fo r  th i s  case is due to  s tar t ing the estimate o f  xol a t  the true value 

of x,(O), i.e.,  
h 

xo+0) = X , ( O )  2 

Example I11 

( a )  The system trajectory is defined by 

x, = x2 xl(0) = 0.5 

x2 = - ( I  - A ) X l  x2(o) = 0.0 

where A is  a constant b u t  un4wown parameter variation. 

of this example A i s  set a t  0.25, b u t  this value does n o t  affect  the 

For the purpose 

estimator i n  any way because i t  i s  assumed unknown. 

( b )  The measurements are defined by 

y = h ( t ,  x )  + v ( t )  
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where h(t, x)  = a( t )xl  + x2 for  a ( t )  = 2 + sin (0.5 t). 

random variable w i t h  a uniform d i s t r i b u t i o n  from +0.1 t o  -0.1. 

v ( t )  i s  a 

Hence, 

vm = 0.1. 

( c )  The original estimator as defined by equations (1-26) and 

(1-27) is: . 
* 

;ol - - xo2 + zCa(t)Pll -c P121CY - (a(t);c,, + X02)1 X o l ( W  = 0 

The derivation o f  the above used the following: 

Since a i s  unknown t o  the estimator 
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The cost of this estimate is defined by (2-5) and (2-7) w i t h  

B = r  0 
01 1 . 

h 

( d )  x, is  generated us ing  the procedure outlined i n  Chapter 11, 

Section B ,  and the cost of this estimate i s  found us ing  the given B 

I matrix. 

For a final time of 12  seconds the resul ts  are: 

52, = 0.287 

52, = 0.204 

% improvement 29% 

See Graph I11 for  a p l o t  o f  these resul ts .  

reveals t ha t  a t  certain times, i.e., t = 3.75 seconds, t e improved 

estimate appears t o  be worse than the original estimate. 

calculation o f  the instantaneous cost or the integrands of the cost 

functions JZ0 and 52, a t  any such time relat ive t o  the given B matrix 

demonstrates t ha t  im is  more accurate t h a n  io. The d i f f icu l ty  l i e s  i n  

the f a c t  tha t  some components of Xm will lose accuracy i f  others are 

improved. 

of xm and i t  i s  the overall cost  that  i s  less ,  no t  the cost re la t ive t o  

Inspection of  this graph 

I P 
However, 

I 

I 

The cost function 52, however is  a function of a l l  components 
h 

h 

any single component of x,. 
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0. Comments on the Extended Estimator 

The extended estimator improves estimation i n  a l l  of the examples 

tested. The largest  improvement occurs when the original estimator i s  

doing a poor job,  and the improvement i s  negligible i f  the original 

estimator i s  estimating accurately. 

i s  t o  improve estimation during t i e  i n i t i a l  period when the estimator 

i s  converging on ;the correct estimates or a f te r  some disturbance t o  the 

system which causes a large j u m p  in the estimation error. 

i s  re la t ively simple t o  implement once the original estimator has been 

constructed, and i t  has l i t t l e  effect  on the estimation i f  the estima- 

tion i s  accurate. 

The main advantage of this  technique 

The technique 
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C H A P T E R  I11 

SIMPLIFIED ESTIMATOR 

A. Problem Definition 

The problem discussed i n  this chapter-is the practical application 

of the estimation technique summarized i n  Chapter I ,  Section B. I t  i s  

desired that  a way be found to  reduce the large amount o f  computation 

necessary fo r  this estimator so that i t  may be implemented i n  a more 

practical manner. 

varying systems i t  is possible to  “linearize” the estimator i n  such a 

I t  i s  shown tha t  for  some non-linear and/or time 
i 

way that  adequate i f  not optimal estimation occurs. 

l inear and time varying terms are removed from the system and the matrix 

Riccati equation is  solved for steady s t a t e  using the remaining l inear 

system. Then these steady s t a t e  values are used i n  the estimation 

equations derived from the fu l l  non-linear and/or time varying system. 

This greatly reduces the computation required by the estimator because 

the matrix Riccati equa ion  need only be solved once. 

convenient that  this solution is  ‘run ”off-line.” 

First the non- 

8 

I t  i s  also f 

B. 

Using equations (1-1), (1-2) and (1-9) the system equations can be 
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The original estimation equations (1-26) and (1-27) for  this system 

$ are : 1 
n 

= g o ( t ,  x) f 2P(t)H(t, x)Q{y(t)  - h ( t ,  ;)I f f ( t ,  j) 

T 1 1  P = g o i ( t ,  i )P f Pgoj;( t ,  i )  f 2P[HQ{y - h( t ,  X)3 I iP  f 7 W- 

The use o f  these equations requires that the f ( t ,  5) tern be s e t  t o  zero 

since f ( t ,  x) i s  the unknown part of the system. 

b u t  unknown, value of f ( t ,  x) affects  the above equations only indirectiy 

Hence, the actual, 

through the measurements of the kystem o u t p u t ,  i .e . ,  y ( t ) .  Likewise, the 

form of f ( t ,  x )  has no effect  on the form o f  the f inal  estimator equations 

because f ( t ,  x )  i s  assumed to ta l ly  unknown. 

The appearance of f ( t ,  ^x) in the estimator suggests t h a t  i t  might be 

possible t o  use th i s  term t o  simplify the equations. This i s  done by 

breaking u p  g,(t ,  x) into two parts. 

the l inear  terms of g o ( t ,  x) and the second par t  contain a l l  of the non- 

Let the f i r s t  part contain a l l  o f  

l inear  and time varying terms. t e t  

g o ( t ,  x) = Ax f s ( t ,  )o (3-3) 

where A i s  an n x n constant matrix and s ( t ,  x )  i s  a non-linear and/or 

time varying n-vector. Now write the system equation (3-1) as 

x = Ax f f ' ( t ,  x) (3-4) 

where 

f ' ( t ,  X I  = s ( t ,  x) f f ( t ,  4. (3-5) 

The equations o f  the simplified estimator are generated from (1-26) and 
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(1-27) w i t h  Ax i n  the r o l e  o f  go(t ,  x)  and f '(t, x) i n  the r o l e  o f  

f(t, x) even though f '(t, x) i s  rlot completely unknown as assumed i n  

the de r i va t i on  o f  the o r i g i n a l  estimator. 
h 

O r i g i n a l l y  the f(t, x) term of the est imator was s e t  t o  

because i t  was unknown, bu t  i n  the s i m p l i f i e d  est imator t h i s  

f ' ( t ,  i )  which i s  p a r t i a l l y  known. 

s e t  t o  zero which gives: 

I n  t h i s  est imator f(t, 

f '(t, ;) = s ( t ,  ;) 

zero 

term becomes 

i s  again 

(3-6) 

The estimator equations w i t h  a l l  o f  the above changes become the 

equations o f  the s i m p l i f i e d  estimator. These equations are 

= Ai + 2PH(t, i )Q{y ( t )  - h ( t ,  ;)I + s ( t ,  i )  (3-7)  

(3-8) 
T 1 1  = AP + PA + 2P[HQ{y - h( t ,  ;)}];P + W- 

This est imator i s  much simpler than the o r i g i n a l  est imator because the 

P equation may be solved f o r  a s-:eady s t a t e  solut ion.  
+ 

This so lu t i on  

may be found beforehand and the constant P which r e s u l t s  i s  denoted by 

i.e. , P steady state.  The use o f  Pss g r e a t l y  reduces the amount pss 
o f  f u r t h e r  computation required'by the estimator. The existence o f  t h i s  

steady s t a t e  s o l u t i o n  f o r  P i s  a consequence o f  the f a c t  t h a t  the 

d i f f e r e n t i a l  equation f o r  P depends only upon the l i n e a r  p a r t  of the 

system. Pss i s  found by s e t t i n g  i )  i 0 i n  the P equation, (3-8),  and 

I 

solvdng the r e s u l t i n g  equation f o r  Pss. The s imp l i f i ed  estimator i s  now: 
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I t  should be noted t h a t  the optimization of this estimator i s  

carried out assuming tha t  s ( t ,  x )  is completely unknown. The simplified 

estimator, therefore, cannot be optimum because the optimization was 

carried out par t ia l ly  ignor ing  the form of the non-linear and time 

varying terms i n  the system. T h i s  i s  the price tha t  must be paid 

for  the simplification that is achieved. 

There are two major theoretical drawbacks to  this simplification 

technique. 

system play a dominant role i n  the response of the system, the estima- 

tion will probably be very poor because the form of these terms is  

par t ia l ly  ignored i n  the optimization process. 

of i )  = 0 for  Pss may lead to  difficulty.  T h i s  solution depends on the 

A matrix and on h ( t ,  x ) ,  the function which relates  the measurements 

to the s ta tes  of the system. Since this A matrix represents only part  

of the true system i t  may not be possible to find an adequate solution 

for  Pss. A and h ( t ,  x )  may be s k h  tha t  no steady s t a t e  solution for  

First, i f  the non-linear and time varying terms of the 

Second, the solution 

exists.  T h i s  happens i f  A i s  not controllable or i f  h ( t ,  x )  i s  ps s 
time varying. 

Consequently, the applicabili ty of this technique depends entirely on 

the problem a t  hand. 

Estimation i n  this case is  e i ther  impossible or nonsense. 

C. Experimental Results fo r  the Simp1 i f ied Estimator 

In this section an example is given which demonstrates the advantages 

of the simplified estimator for  a case where i t  is  applicable. Any particu- 

l a r  problem must be examined carefully t o  see i f  this technique can be 

used. 
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( a )  The system i s  defined by: 

x, = x2 X1(O)  = 2.0 

-O*lt x,(O) = 1.0 xl = -2xl - 3x2 I- 5 sin (t) - 2e ,2 

( b )  The measurements are defined by 

y = x l + v  

where v = 0.1 IxlI r, + 0.1 r2. rl and r2 are independent random 

variables, uniformly distributed from I-1 t o  -1. This resul ts  i n  

vm 1 0.25. 

(c) The fu l l  scale estimator as defined by equations (1-26) and 

(1-27) is  . 
= x2 I- 2Pll(Y - 

h 

x2 = -2x1 * - 3 i 2  + 5 sin t - 2e-t/'oii t 2p2-, (y - x1 

X1(0) = 0 

i l l  = 1 I- 2(P12 " P I ] )  

QO) = 0 

p12 = p21 

2 

- - t / l 0  2 1;12 - ~ 2 2  - 3 ~ 1 2  - 2 ~ 1 1 ( 1  I- 3e 

P22 = 1 - 2P12 - 

P11(0), = 3 P12(0) = 1 P&) = 3 

x1 I- ~ 1 2 )  

t / l O  2 6p22 .. 4p12(1 3e- x i )  
2 

This estimate i s  plotted i n  Graph IV. 

( d )  A possible technique of reducing the amount of computation 
I I 

required by the ful l  estimator above would be t o  completely ignore 
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the non-linear term 

-t/10 3 
x1 -2e 

which appears in the original system equations. 

remaining system i s  l inear and a simpler s e t  of estimation equations i s  

If th i s  i s  done, the 

deri ved . 
$0) = 0 . 

n h n h 

x2 = -2x1 - 3X2 + 5 sir\ (t) + 2pZ1(y - x , )  X2(0) = 0 

with the steady s t a t e  solution of the P equations: 

- = -0.198307 p12 - p21 

pZ2 = 0.285763 

I 

This estimate i s  plotted in Grap: V ,  and comparing this  with Graph IV 

i t  i s  obvious t h a t  th i s  method o f  simplifying the estimator gives rather 

poor results.  

( c )  The simplified estimator described ea r l i e r  i n  th is  chapter 

i s  now tested and compared w i t h  the results o f  the two estimators above, 

The important equations are 

- t/ 10,3 
7 -2xl - 3X2 - 2e 

0 

l i  g o ( t ,  X)  = AX + s ( t ,  x )  = 

where 

I * I  
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Then 
A CL 

f ' ( t ,  x )  = s ( t ,  x ) ,  

Using equations (3-7) and (3-8) and solving for the steady s t a t e  P 

matrix the estimation equations become: 
d 

A A A 

x1 = x2 + 2 P l l ( Y  - X I )  il (0) = '0 

p l l  = 0.549266 

pZl = -0.198307 

Notice tha t  this estimator i s  exactly the same as the one derived i n  b 

above except the non-linear time varying term appears as an i n p u t .  T h i s  

means tha t  the amount of computation required by the two methods is 

practically the same, which i n  both cases i s  much less  than tha t  of the 

f u l l  scale estimator. The trajectory o f  this estimator i s  plotted i n  

Graph VI and the estimation is obviously much bet ter  than that  of the 

other simplified estimator. 

I 

I 

I t  i s  not as good as the fu l l  scale 1 

estimator, however. T h i s  loss i n  estimation accuracy was expected. 

The cost  o f  these three estimates was calculated us ing  (2-1) w i t h  B equal 

to  the identity matrix and tf = 6 seconds. The results are: 

Cost Computer 
32 Time (sec) 

Full Estimator 1.87 134 

Linear System Estimator 5.13 100 

Simplified Estimator 3.87 101 I 
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D. Comments on the Simplified Estimator 

The advantage o f  the simplified estimator i s  'the reduction i n  

computation required i n  estimatidn. T h i s  reduction becomes much greater 

as the order of the system t o  be estimated increas,es. The fu l l  estimator 

requires that  the P equation, i .e.,  the matrix Riccati equation, be 

solved each time the estimator i s  used. This equation i s  a non-linear 

time varying matrix diffLrentia1 equation and i t s  solution amounts to 

solving n ( n  + l ) / 2  f i rs t  order non-linear time varying interdependent 

different ia l  equations b cause i t  i s  found to be a symmetric matrix 

different ia l  equation. 

any high order system. 

the P equation has a steady s t a t e  solution which must only be solved 

f! 4 
T h i s  i s  c;,n excessive amount of computation fo r  

The simplified estimator, however, insures that 

for  once. T h i s  solution' is r u n  beforehand and the steady s t a t e  values 

of P are used i n  the estimator. 

differential  equations must be solved rather than n + n ( n  f 1)/2 equations. 

Now, when the estimator i s  used only n 

T h i s  i s  very convenient assuming that  the loss i n  estimation accuracy 

can be accepted i n  exchange fo r  the reduction i n  computation. 

i n  estimation accuracy i s  a function of the system tha t  i s  t o  be 

estimated and will vary greatly from system t o  system. 

T h i s  loss 

This technique depends on s p l i t t i n g  up the system into a l inear and 

a non-linear part ,  and the principal part  of the estimator depends on the 

1 inear part  of the system. 

have a l inear part. Those systems which do have l inear terms s t i l l  may 

not have enough l inear  terms around which a reasonable estimator may be 

derived. 

The  major problem is that many systems may not 

If  the A matrix which results from the l inear  part o f  the system 
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i s  not  controllable then i t  cannot be assured t h a t  a steady s t a t e  

solution for  the P matrix exists.  

steady s t a t e  solution exists.  

the major terms which determine $he response of the system, then the 

estimation may be very poor becake these terms were n o t  considered 

If  h ( x ,  t) i s  time varying then no 

If the nonlinear terms i n  the system are 

i n  the optimization o f  the estimator. However, i f  none of the above 

occurs in a particular problem, then the simplified estimator may be 

used t o  great advantage as demonstrated. 



42 

C H A P T E R  IV 

CONCLUSIONS AND SUGGESTIONS 

T h i s  report describes two techniques designed to  make the sequen- 

t i a l  estimator summarized i n  Chapter I more useful. The f i r s t  suggests 

a way of improving the accuracy of the estimator given knowledge of the 

bounds on the measurement noise. The second suggests a way of reducing 

the amount of computation involved i n  estimation by g i v i n g  up some 

accuracy. Both techniques have definite limitations and their  use 

must be determined by a careful analysis of the problem a t  hand. 

T h i s  report is  an attempt t o  improve upon a basic sequential 

estimation technique. 

methods of improvement, b u t  i t  seems that any major improvement would 

have to  come from a more basic analysis of the whole estimation problem 

Further work along this l ine  might  lead to  more 

rather than from trying t o  improve upon an estimator whose basic design 

has a1 ready been determined. 
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